近日,CMU 助理教授贾志豪(Zhihao Jia)团队创新玩法,推出了一个名为「Mirage Persistent Kernel(MPK)」的编译器,可以自动将 LLM 转化为优化的巨型内核(megakernel),从而将 LLM 推理延迟降低 1.2 到 6.7 倍。 在这种设计中,系统仅启动一个 GPU 内核来执行整个模型 —— 从逐层计算到 GPU 间通信 —— 整个过程无需中断。这种方法提供了以下几个关键的性能优势: 消除内核启动开销:通过避免重复的内核调用,即使是在多 GPU 环境下,也能消除内核启动开销;实现跨层软件 pipeline 允许内核在计算当前层的同时,开始为下一层加载数据;重叠计算与通信:由于巨型内核可以同时执行计算操作和 GPU 间通信,从而隐藏通信延迟。 现有的高级 ML 框架 —— 如 PyTorch、Triton 和 TVM,它们本身并不支持端到端巨型内核生成。此外,现代 LLM 系统由各种不同的专用内核库构建而成:用于通信的 NCCL 或 NVSHMEM,用于高效注意力计算的 FlashInfer 或 FlashAttention,以及用于自定义计算的 CUDA 或 Triton。 那么能否通过编译自动化这个过程呢?受到这个问题的启发,来自 CMU、华盛顿大学、加州大学伯克利分校、英伟达和清华大学的团队开发出了 MPK—— 一个编译器和运行时系统,它能自动将多 GPU 的 LLM 推理转换为高性能的巨型内核。MPK 释放了端到端 GPU 融合的效能优势,同时只需要开发者付出极小的手动努力。 MPK 的一个关键优势在于:通过消除内核启动开销,并最大程度地重叠跨层的计算、数据加载和 GPU 间通信,实现了极低的 LLM 推理延迟。 除了单 GPU 优化,MPK 还将计算与 GPU 间通信融合进一个单一的巨型内核。 这种设计使得 MPK 能够最大程度地重叠计算与通信。因此,MPK 相对于当前系统的性能提升随着 GPU 数量的增加而增大,使其在多 GPU 部署场景下尤为高效。 Part 1:MPK 编译器,其将 LLM 的计算图转化为优化的任务图;Part 2:MPK 运行时系统,该系统在单个巨型内核内执行任务图,以实现高吞吐量与低延迟。 LLM 的计算过程通常表示为计算图,其中每个节点对应一个计算算子(如矩阵乘法、注意力机制)或集合通信原语(如 all-reduce),边表示算子间的数据依赖关系。现有系统通常为每个算子启动独立的 GPU 内核。 然而,这种「单算子单内核」的执行模型难以实现 pipeline 优化,因为依赖关系是在整个内核的粗粒度层面强制执行的,而非实际数据单元层面。 典型案例如矩阵乘法(matmul)后接 all-reduce 操作:现有系统中,all-reduce 内核必须等待整个 matmul 内核完成。而实际上,all-reduce 的每个数据分块仅依赖 matmul 输出的局部结果。这种逻辑依赖与实际依赖的错配,严重限制了计算与通信的重叠潜力。 下图 2 展示了 MPK 编译器将 PyTorch 定义的 LLM 计算图转化为优化细粒度任务图,最大化暴露并行性。右侧展示次优方案 —— 其引入不必要的数据依赖与全局屏障,导致跨层流水线优化机会受限。 为了解决此问题,MPK 引入的编译器可将 LLM 计算图自动转化为细粒度任务图。该任务图在子内核级别显式捕获依赖关系,实现更激进的跨层流水线优化。 任务(矩形表示),代表分配给单个 GPU 流式多处理器(SM)的计算 / 通信单元。事件(圆形表示),表示任务间的同步点。触发机制,每个任务发出指向触发事件的边,该事件在关联任务全部完成后激活。依赖机制,每个任务接收来自依赖事件的边,表明事件激活后任务立即启动。 任务图使 MPK 能够发掘计算图中无法实现的 pipeline 优化机会。例如,MPK 可以构建优化任务图 —— 其中每个 all-reduce 任务仅依赖于生成其输入的对应 matmul 任务,从而实现分块执行与计算通信重叠。 MPK 包含内置 GPU 运行时系统,可在单个 GPU 巨型内核内完整执行任务图。这使得系统能在推理过程中无需额外内核启动的情况下,实现任务执行与调度的细粒度控制。 获取任务:从队列中提取下一待执行任务。执行计算:运行任务(如矩阵乘法 / 注意力机制 / GPU 间数据传输)。事件触发:任务完成后通知触发事件。循环执行:重复上述过程。 调度决策由 MPK 的分布式调度单元处理,每个调度单元运行于单个线程束(warp)上。由于每个流式多处理器(SM)可以容纳多个线程束,因此单 SM 最多可并发运行 4 个调度单元。每个调度单元维护激活事件队列,并持续执行以下操作: 下图 3 展示了 MPK 的执行时间线,其中每个矩形代表一个在工作单元上运行的任务;每个圆圈代表一个事件。当一个任务完成时,它会递增其对应触发事件的计数器。当事件计数器达到预设阈值时,该事件被视为已激活,并被加入调度单元的事件队列。随后,调度单元会启动所有依赖于该事件的下游任务。 由于所有的调度和任务切换都发生在单一内核上下文内,任务间的开销极低,通常仅需 1-2 微秒,从而能够高效地执行多层、多 GPU 的 LLM 工作负载。 团队对 MPK 的愿景是使巨型内核编译既易于使用又具备高性能。目前,你只需几十行 Python 代码(主要用于指定巨型内核的输入和输出)即可将一个 LLM 编译成一个巨型内核。此方向仍有广阔的探索空间,目前正在积极攻关的一些关键领域包括如下: 支持现代 GPU 架构。下一个里程碑是将 MPK 扩展到支持下一代架构,例如 NVIDIA Blackwell。一个主要挑战在于如何将线程束专业化,这是新型 GPU 的一项关键优化技术,与 MPK 的巨型内核执行模型相集成。处理工作负载动态性。MPK 目前构建的是静态任务图,这限制了它处理动态工作负载(如 MoE 模型)的能力。团队正在开发新的编译策略,使 MPK 能够在巨型内核内部支持动态控制流和条件执行。高级调度与任务分配。MPK 在任务级别解锁了新的细粒度调度能力。虽然当前的实现使用简单的轮询调度在流式多处理器(SM)之间分配任务,但团队看到了在高级调度策略(如优先级感知或吞吐量优化策略)方面令人兴奋的机会,可应用于诸如延迟服务等级目标(SLO)驱动的服务或混合批处理等场景。 团队相信,MPK 代表了在 GPU 上编译和执行 LLM 推理工作负载方式的根本性转变,并热切期待与社区合作,共同推动这一愿景向前发展。
成色18k.8.35mb菠萝“效率成生存刚需的当下,技术也在倒逼商旅行业变革。”滴滴企业服务事业群总经理蔡晓鸥说,这些智能体是基于70万企业累积的B端服务数据,采用开源模型Multi-Agent架构来实现的。“滴滴企业版希望用技术重构商旅效率,更精确地管理差旅路上的每一公里。”我国大约50%人口感染幽门螺杆菌,根除幽门螺杆菌是预防胃癌最可控途径,而耐药是阻碍根除的关键。芯超牵头组织55家医院建立了3.48万份菌株库及突变数据库,提出的地区诊疗个性化“中国观念”被2021世界胃肠病学组织全球指南采纳。125家医院4.34万例患者接受个性化治疗,幽门螺杆菌根除率逾90%。芯超提出的幽门螺杆菌诊疗首战即决战的“中国方案”,被国际上多个共识认可采纳。成色18k.8.35mb菠萝WWW.17CAO.GOV.CN20日上午,伊朗驻德国大使艾哈迈达巴迪在柏林一场非正式讨论会上,向包括《环球时报》特约记者在内的20多位国际记者介绍了伊朗当前局势,表达对通过外交渠道解决问题的期望。会后,艾哈迈达巴迪表示当天将飞赴日内瓦参加会谈。据法新社报道,在欧洲三国代表与伊朗代表会谈前夕,拉米19日在白宫与美国国务卿鲁比奥和中东问题特使威特科夫举行会谈,并在会后表示“未来两周存在一个达成外交解决方案的窗口”。美国国务院称,拉米和鲁比奥“同意伊朗永远不能发展或获得核武器”。法国外长巴罗表示,会谈旨在让伊朗永久放弃核计划和弹道导弹项目。基本上都是一些情怀粉,但这次《独眼的残像》号称是近10年来最好的《名侦探柯南》大电影,在口碑的加持下确实吸引了很多不喜欢电影院的粉丝支持,预测其最终票房有望冲击4亿,打破这个系列在内地的纪录。
20251207 👄 成色18k.8.35mb菠萝就此纠纷,6月20日,澎湃新闻多次致电涉事4S店。工作人员称,对于销售员“私自收款”一事,4S店事先并不知情。而涉事4S店负责人张女士则称,目前不方便接受采访,待结果明确后将给出答复。xjxjxj55.gov.cn随着伊以冲突升级,国际社会呼吁克制的声音不绝于耳,但在各方战略利益激烈碰撞的中东战场,外交解决的空间尚未明显扩大。多方博弈之下,这片古老的土地,再次站在了战争与和平的十字路口。
📸 闫志成记者 赵运智 摄
20251207 😏 成色18k.8.35mb菠萝记者称,无论是否能成功交易得到杜兰特,森林狼仍然视里德为核心阵容的重要一员。里德拥有一个价值1500万美元的球员选项,但他将拒绝执行,成为完全自由球员。在前场球员市场相对有限的情况下,他将成为市场上最受欢迎的球员之一。WWW.7799.GOV.CN这一家五口就住在绥江边上,羊梦杰记得,当时的水位已经近3米,一楼的底商全被淹了。因为水流很急,200多米的直线距离,大家划着救援艇,逆流走了20分钟才到。最终,他们在艇上立起梯子,带着一家五口从阳台防护栏的逃生口钻了出来。
📸 孙京平记者 郜守健 摄
🖤 报道称,这一系列接触发生在本月特朗普与马斯克“决裂”后不久。白宫官员表示,贝索斯近来积极“拉拢”特朗普,甚至邀请特朗普参加自己在威尼斯的婚礼。www.17cao.gov.cn






