在 AI 时代的浪潮下,顶尖人才影响力空前高涨,其地位更被市场推升至了前所未有的高度。无论是谷歌 Transformer 论文八子,还是从 OpenAI 出走的科学家,他们要么自立门户,拿到亿级投资、百亿级估值,或者跳槽到他处,凭己之力拉近企业间的技术代差甚至影响竞争格局。 顶尖人才的供给增长速度似乎跟不上互联网大厂、初创公司急剧膨胀的需求,因此拥有极强议价能力。企业为了招揽这些具备突破性能力、能引领方向或解决关键瓶颈的人才,使出了浑身解数。 互联网大厂纷纷放大招,京东 TGT 顶尖青年技术天才计划、字节 Top Seed 人才计划、腾讯青云计划、百度文心・新星计划…… 各种行业 Top 薪酬甚至薪酬不设上限,钞能力拉满,誓要将顶尖人才收入麾下。 最近,一场聚集了产业技术大佬和高校技术天才的线下技术沙龙上,我们听到了他们对于前沿技术方向的深度探讨和双方对技术人才发展共同的思考和期待。 这是今年 5 月全球启动的 “京东技术沙龙” 活动的最后一场,多位京东零售内部大模型相关技术团队负责人来到现场,与大家分享顶会论文和真实场景案例,展示最新前沿技术进展与创新应用实践的融合。 来自核心技术部门的青年技术专家也以学长学姐的身份向同学们传授经验、分享心得,帮助大家快速了解京东丰富的业务场景、以及如何找到自己最适配的团队和岗位。 如何从新人快速成长为技术骨干,实现从学界研究到产业实践的角色转变?怀揣着和现场同学们一样的好奇心,我们与来自京东零售产研的 5 位青年技术专家聊了聊,他们中最大不过 92 年、最小 98 年。他们的经历,也许可以为即将踏入职场的新人提供一些参考和借鉴。 洛川有两位业务 + 技术导师,每个月他们都会抽出时间找他一起聊一聊,无论是个人成长方面的疑虑,还是技术层面的困惑。很快,洛川开始系统性地熟悉所在部门的技术栈、代码库,并逐渐适应 AI Infra 团队的工作节奏。 几个月后,已经顺利渡过新人阶段的洛川迫切地希望将自己博士期间的研究成果真正服务于实际问题。「以往的研究大多停留在论文层面,而京东拥有丰富业务场景和海量产业数据,让我的研究终于有了规模化应用的机会。 初步熟悉业务之后,洛川开始主动思考自己所在技术领域存在的痛点。他所在的团队主要负责构建和优化支撑大规模 AI 应用的基础设施,涵盖集群管理、算力调度、数据与样本中心建设、训练与推理引擎优化等。 他发现,进入大模型时代以来,推荐领域开始利用 Scaling Law 带来增益。不过,随着推荐模型中稀疏参数规模的持续增长,加上像京东这种电商平台中用户行为序列往往长达数万甚至十万,这些参数的存储、通信以及查询开销成了大规模点击率预测(CTR)模型分布式训练的瓶颈,影响到了算法团队的迭代效率。 面对这一难题,洛川跃跃欲试。在了解业务团队的核心诉求并精准定位技术难点之后,他迅速投入,分析了学术界和工业界现有方案并着手制定适合业务场景的技术规划和可行落地方案。 很快,他和团队一起设计并实现了一套重要性感知的量化与缓存方案,该方案显著减少了稀疏参数的存储、通信和查询开销,大幅加速 CTR 模型的分布式训练进程。看到实际效果落地,洛川深感「自己的辛苦没有白费。 」 这只是洛川这一年来的一个缩影,如今的他已经找准了自己的定位,与 AI Infra 团队一道攻克一个又一个技术难题。「作为新人,要克服畏难心理,深入一个领域,勇于啃下硬骨头。 谦屹专注于图像生成、多模态大语言模型、OCR 等计算机视觉研究。田野专注于搜索相关性业务,以及 NLP 技术在搜索场景的落地。加入京东后分别入职广告产研部和搜推技术部。 田野称自己需要克服的最大挑战是实验室思维到企业工程师思维的转变,这源于不同环境下问题定义与数据体系的根本性差异 实验室环境下的研究通常针对明确定义的任务进行:问题本身、应用场景以及训练集和测试集都是预先给定且相对固定的,目标聚焦于在特定数据集上提升指标。而在真实的工业级电商搜索场景中,业务的核心问题会随着发展阶段快速变化;同时,工业场景中不存在现成的标准数据集,要求工程师自主构建整个数据闭环。 这种转型并不容易,「我要逼自己从纯粹的解题者转变为具备持续业务洞察力、能动态定义核心问题并自主构建适配数据与评估体系的问题定义者 + 架构师。 田野花了很长一段时间才适应了新角色。此后,他便开始如鱼得水,利用自己的专业知识深度参与到搜索场景的体验升级。在跑算法、训大模型的过程中,田野最担心显卡不够用,但京东内部提供了一套灵活的资源倾斜策略,对长期有价值的项目全力支持。田野受到了很大的鼓舞,「如今在算力资源上得到了保证,自己也就再无后顾之忧,可以放手去研究生成式搜索技术了。 而谦屹刚入职时最直观的感受是,原本以为自己积累了深厚的技术底子,但在工业界,业务需求与技术迭代的速度太快,原有的知识与技能面就显得窄了。 好在,他可以直接面向实际应用场景,对业务痛点进行最直接、最深刻的体察。谦屹特别提到了自己参与的一项电商广告图片生成创新工作 —— 基于人类反馈的可信赖图像生成(RFNet +RFFT),在丰富人类审核数据的基础上,利用 RLHF 技术,通过 RL 算法将人类偏好反馈给生成模型,有效降低了商品形变、背景错位等问题的发生概率,提升了模型生成可用图片的能力。 短短三年,他发表了 10 余篇创新性科研成果,并被多个 AI 顶会以及 AI 顶刊收录。目前,他与团队正积极探索前沿生成式 AI 能力对广告创意生成的赋能,尤其是多模态大模型批量化和自动化创意生产。 无论是田野还是谦屹,他们瞄准千万消费者和商家的真实体验痛点,在应对和解决业务挑战中获得了快速的成长和收获。 其实在京东零售技术团队中,还有很多类似的年轻算法工程师们,95 后的长林和岛屿就经常和前面 3 位一起交流、切磋技术问题。 长林研究的方向是大模型蒸馏和数据选择,侧重低资源情况下大模型的训练与规模化应用,由于现代深度学习与大模型的成果依赖海量数据、巨大参数规模和高昂算力成本,使得低资源训练极具挑战。「学术训练的核心在于将现实问题简化、抽象为边界清晰的数学问题求解,但现在面对的问题不是孤立的知识点,而是技术、业务、资源、人员交织的系统」 肯定不能「拿着锤子找钉子」的生搬硬套,长林开始积极请教周围热情的导师、前辈、学长学姐,与他们面对面交流、探索的过程中他们给了长林很大的自由度与耐心,「不要怕,达成目标的手段并不唯一,要敢想、敢为、探索多种可能性,我们来兜底」,这是他经常听过的鼓励与鞭策 他提出仅选择信息最丰富的样本子集进行训练,以在模型性能和训练效率之间取得更好平衡。最终证明,在平均仅采样 70%-80% 数据的情况下,模型精度能够保持与原模型相当,且优于其他数据选择方法。 近期,长林的三篇论文分别被顶会 ICLR、AAAI 和 ACL 接收,还提交了 8 项专利,可谓收获满满。其中一项代表性工作是基于动态数据选择加速模型训练。 同样 95 后的岛屿,她的工作重点在大语言模型的产品化应用。在电商场景中,通过大模型生成文案,帮助用户选购、为用户提供专业商品建议。传统模型更注重语言的高效和准确,而 95 后的她认为,要让用户真正逛起来,语言提供的情绪价值同样重要,于是她提出同时考虑大模型的语言风格,丰富个性化的语言表达以适配不同的用户需求,这个建议一提出就在内部获得认可,团队也配合她一起更新了方向和规划,这让岛屿备受鼓舞,「在这里,沟通没有门槛,行业大佬会直接参与和指导项目,能提升用户体验,就是第一优先级。 自由的思想碰撞 × 扎实的工程实践 × 包容的成长环境,让这些 95 后们能充分追求自己热爱的技术方向。能跳出自身固有角色去主动思考问题、提出建议,创造力得到了充分激发。 从高校实验室迈入到覆盖亿级用户的京东零售大环境,从硕博生转换为企业工程师,几位青年技术专家的成长之路走得很稳,技术带来的能量得以发挥最大的价值。 京东希望能为更多像他们一样的青年技术人才,提供科技温度和产业厚度共同构筑的成长热土,让更多年轻人在这里加速成长、施展才华、定义未来。 2017 年起,京东就启动了面向青年技术人才的 “博士管培生项目”, 一批优秀的技术人已经迅速成长为各个技术板块的核心骨干,今年 5 月 8 日再次加磅,启动了京东 TGT 顶尖青年技术天才计划,该计划面向全球高校本硕博毕业生以及毕业两年内的技术人才,薪酬「不设上限」,涵盖了八大研究方向:多模态大模型与应用、机器学习、搜索推荐广告、空间与具身智能、高性能与云计算、大数据、AI Infra 以及安全等 对人才吸引的诚意与决心,以及更加立体的人才培养模式、多维度又专业化的指导,京东希望进一步为人才成长提供成长保障,持续优化的人才梯度建设也将不断为京东及其业务赋能。 未来,这支融合了前沿探索精神和实战经验的年轻化技术军团,不仅更能贴近新生代用户与市场的思维,还将继续驱动京东在 AI、大数据、云计算等核心领域的创新与突破,构筑起难以复制的技术竞争力护城河。
成色18k.8.35mb菠萝直播吧6月19日讯 天空体育消息,水晶宫就签下葡萄牙体育中卫迪奥曼德进行了初步谈判,球队主帅格拉斯纳想要在今夏引进一名顶级中卫。北京时间6月14日凌晨,郑钦文2-0击败拉杜卡努,进入伦敦赛4强。按照赛程安排,郑钦文将在今晚22点左右出战半决赛,她的对手是阿尼西莫娃。若能取胜,郑钦文可获得96万元奖金。成色18k.8.35mb菠萝8x8x.gov.cn今年5月初,参加完合作伙伴、风头最劲的AI影视公司Promise的发布派对后,她在朋友圈感慨,“2025年真的是AI影视和工作室的爆发年,未来让人无比期待。”掌握了选色的门道,搭配就成了关键,这里有两个超实用的搭配技巧,能让你的年轻色穿搭既高级又不出错,轻松拿捏时尚感!
20251207 🙈 成色18k.8.35mb菠萝点评:对于GPT-5,行业从去年盼到了今年,其延迟发布一度被认为是模型迭代放缓的证明。关于GPT-5 的发布时间,OpenAI 初步定于今年夏天,7 月是目前的目标。然而,公司也表示计划可能随时调整。如果 GPT-5 未能达到内部设定的性能目标,发布可能会延迟。www.xjxjxj18.gov.cn扎尔卡在接受美联社采访时说,被暗杀的这些人是伊朗顶尖科研人员,“他们几乎掌握了所有核心知识”,整个(科学家)团队的消失,让伊朗的核计划倒退了好几年,甚至更长时间。
📸 杨传印记者 徐文良 摄
20251207 🔞 成色18k.8.35mb菠萝如今就业市场竞争激烈,很多大学生毕业后都面临着就业难的问题。像林宇这样能够找到一份稳定的工作,并且有着不错的收入和福利待遇,已经算是比较幸运的了。而且,每个人对于“有出息”的定义都不同,林宇认为,能够在工作中获得满足感,生活过得安稳,就是一种成功。他也理解父母的良苦用心,但他更希望按照自己的节奏去规划未来的生活。WWW.77788.GOV.CN王雅瑾:今天在AI时代下,大家不会变得越来越有学习能力和知识。相反大部分人的鸿沟在变得更大,学习能力在变得更弱。因为动力没有那么足了,知识太容易获取,认知的鸿沟会越来越大,企业组织的学习能力也一样。所以最难的是先去试错、练肌肉的这个过程。
📸 胡金龙记者 谢春芳 摄
🔞 据美团消息,公司近日举办算法顾问委员会首场研讨会,旨在推动算法透明化建设,聚焦骑手权益保障与行业可持续发展。www.xjxjxj18.gov.cn






